U-Microcomputers Ltd
Winstanley Industrial Estate
Long Lane
Warringto
Cheshire
T1x 629279 U-MICRO G
$\begin{array}{lll}\text { Te1 } & 62925 & 54117\end{array}$

U-Microcomputers Inc 300 Broad Street Stamford Connecticut 06901 USA

T1x 965999 O\&S STD Te1 $203 \quad 359 \quad 4236$ T.Free $800 \quad 2432475$

Notice: This manual, the U-4DISC Card and the firmware supplied on the card are copyright (C) U-Microcomputers 1983.

Manual issue A.

Introduction

The U-4DISC is a cost effective way of connecting up to four Apple Disc II or Disc II compatible disc drives to an Apple II + Apple //e or Apple compatible computer. It supplies both control signals, and power to the disc drive. Existing diskettes may be used without any change.

Contents

Introduction
Installation

Operation

Technical description

Appendix 1 Source code listing of driver

Appendix 2 Circuit diagram

Installation
The U-4DISC is simple to install but in case of difficulty consult your supplier.

1) Switch off the computer.
2) Remove lid.

Decide into which slots you are going to install the U-4 DISC main board (marked UFDC4) and auxillary board (see operation section). To just test things and in most cases anyway the main U-4 DISC board will go into slot 6 and the auxillary board into slot 5. NOTE: If only two drives are to be connected then the auxillary board need not be installed.
4) The auxillary board should be received already connected by cable to the main board. If it has been detached then connect it now if you wish to use the auxillary board. The wire from the auxillary board connected to the pad just below the word "FRONT" printed on the board should be connected as indicated in Figure 1.
5) Plug the main board into its chosen slot and then the auxillary board as indicated in Figure 2. The end of the auxillary board marked FRONT should be nearest the front (ie keyboard end) of the computer.
6) Now connect from 1-4 disk drives to the U-4 DISC main board. IMPORTANT - the cable should stick out at right angles from the card if the cable is correctly plugged in. IMPORTANT - the plug must also be correctly inserted eg displacing the connector to the right or left so that some pins are not plugged in will damage the card or disc drive. Refer to figure 4.
7) The card is now ready for use. On power up the disc drive attached to the connector marked " 1 " will switch on and attempt to boot a disc. To test the card just boot a DO
3.3 disc. 3.3 disc.

Fig 1 (a)
Paddle board connections

Fig 1 (b)

Disc cable
connection

Sx, DI \# 4 :

Operation
The U-4 DISC cardis designed to be completely compatible with Apple software written using DOS 3.3 , UCSD or CP/M operating or own written systems should als work satisfactorily provided their low level software operate in

These operating systems refer to the physical disc drives by different nomenclature. DOS 3.3 allows any slots to be used by disc drives whereas PASCAL and CP/M reserve slots for functions. Table 1 relates the drive designations to connectors on the Udrive Cor example if your CP/M program says - "Put diskette in connector 3 of the U-4 DISC main board. To make it easy the connector 3 or the -4 Dise main board. To make it easy the table and this explanation should be all you need to know.

However if you are writing new disk operating systems or enhancing existing ones beware that the $U-4$ DISC PROM is compatible but not the same inside. If your software enters at odd places things probably won't work. But don't despair. A source listing is given at the end of this manual.

Fig 2

Table 1 - Disc Designations

$\begin{aligned} & \text { U-4 DISC } \\ & \text { Slot } \end{aligned}$	AUXILLARY board slot	U-4 DISC connectors	DOS 3.3	UCSD	CP/M
6	5	1	S6, D1	\#4:	A:
		2	S6, D2	\#5:	B:
		3	S5, D1	\#11:	C:
		4	S5, D2	\#12	D:
5	4	1	S5, D1		E:
		2	S5, D2		F:
		3	S4, Dl		na
		4	S4, D2		na

Technical Description

Introduction
The U-FDC4 disk controller card in conjunction with a small paddle card in an adjacent peripheral expansion slots enables the user to control up to 4 floppy disk drives and is completely compatible with the Apple II 16 sector disk format

Operation
Each slot of the Apple II is assigned to two floppy disk drives and the purpose of the small jumper pcb is to connect the NIOSEL and NDEVSEL signals from another slot into the U-FDC4 card which is typically installed in slot 6 . This enables the card to control a total of four drives.

These two jumpered signals are OR`ed with the NIOSEL and NDEVSEL signals that are direct into the U-FDC4 card by means of the two 74LS08 AND gates.

P2 is a 256 by 8 bit ROM which holds the Boot 0 program used by the computer monitor when the computer is switched on or reset. The monitor accesses this program at address Cn00 which activates the NIOSEL line. The power to this ROM is conserved by the two pnp transistors which remove the +5 v . line from the ROM while NIOSEL is inactive.

The 556 is a dual timer. One half generates a reset pulse when power is applied, this signal is duplicating the reset signal generated on the main Apple II processor board. The other half is a monostable with a one second time constant. The output of this timer is used to enable the floppy drive motor and is constantly retriggered during a disk access which involves the transfer of many data bytes since data is accessed via NDEVSEL which is the timer trigger. The effect of this is to stop the drive motor and LED flashing on and off rapidly and also causes the motor to continue running for approx one second after a disk access has been completed.

The 74LS74 D-type flip flop is set and reset by the jumpered NDEVSEL or the direct NDEVSEL and indentifies which two of the four drives is being accessed. The 74LS259 is an addressable latch driven off the lower four bits of the address bus and enabled motor directly via four phases 00 to 03 . It also controls selection of one of two drives.

Q5 of the LS259 and Q of the LS74 are decoded by the 74LS139 to select one of four drives by the NENO to NEN 3 signals.
The 74 LS 323 is a universal shift register operating as a parallel to serial register during a write cycle and as serial to parallel register during a disk read. Parallel data to or from this register is read or written by the Apple cpu over the data line D0 to D7.

Data on the floppy disk is held in a complex encoded serial format. Pl and the 74 LS 174 form a state machine which either encodes the serial data from the LS323 during a write cycle or decodes during a read cycle. Pl is a 256 by 8 bit ROM which holds a series of encoding and decoding bit patterns.

Q6 and Q7 of the LS259 select either a read or write cycle and control the direction of operation of both shift register and the state machine. The pnp transistors powers down both of the state machine ic's. while no disk accesses are taking place.

SOUFCE FILE: DISC CONTROLLER FROM

$52 *$	The following code is also		
53*	USED AS A SUBROUTINE BY THE		
$54 *$			
$55 *$			
56	LDA	\#0	
57	STA	\$26	
58	STA	\$40	
5745	clu		\#TO \$800 UFWARDE
60 L6	LDA	कcobc, X	; WATCH READ DATA LATCH EIT 7
61	EFL	1.6	\%HEN 1. DATA EYTE FRESENT
62 L 7	CIIF-	\# 005	; IS IT START OF HEADER?
63	BNE	16	\% NO, KEEF LOOKING
64 L8	LDA	\$COBC ${ }_{y}$ X	;FOSSIELY, WHAT"S NEXT?
65	BFL	L6	
66	CMF	\# ${ }^{\text {A }}$ A	- IS IT GECOND BYTE OF A HEADEF?
67	BNE	17	: NO, TRY AGAJN
6819	LDA	\$COBC: X	
69	EFL	19	
70	CMF	\#\$96	IS IT AN ADDRESS HEADER?
71	BEC	L10	YYES
72	EvC	L6	1ST OF SECOND FASS THFU THIS CODE?
73	EOF:	\# ${ }^{\text {a }}$ D	ARE WE READING SECtOR DATA?
74	EEC	114	Y YES
75	ENE	5	\%NO, TFY AGAIN
76 L 10	LDY	\# ${ }^{\text {FFD }}$	HANDLE A SECTOR ADDRESS
77 L 11	STA	\$41	YEEAD IN 6 BYTES, AND COMEINE THEM TO E
78 L 12	LDA	कCobc, X	FVOLUME, TRACK AND SECTOR OF SECTOR CUR
79	EFL	42	fBEING READ
80	FOL	A	
81	STA	+5C	
82 Li3	L.DA	+COEC, X	
83	BFL	413	
84	AND	\$马C	
85	Iny		
86	BNE	L11	COMPARE SECTOR FOUND WITH SECTOR
87	EOR	\$30	: REEUIFEDIF NO MATCH REEF TRYING
88	ENE	4	
89	LDA	\$4.1	D DITTO TRACK
90	EOR:	\$40	
91.	ENE	LS	
92	BIT	क20	:SET U-BIT TO INDICATE 2ND FASS THRU C
93	bus	16	
94 L 14	L.DY	\#\$56	? GET SECTOR DATA
95	STY	事S	
9615	LDY	\$Cobc ${ }_{y} \times$	YREAD IN 85 BYTES OF SECONDARY
97	EFL	L 15	ODATA TO \$300-\$S5S
98	EOR	\$0206, Y	
99	DEC	कुC	
100	Loy	\$3C	
01	STA	\$300, Y	
02	ENE	L. 15	
103 Lib	LDY	\$COBC, X	PFEAD IN 256 bYtES OF FRIMAFY DATA
104	BFL	L16	\%TO ADDRESS AFEA FOTNTED TO EY (\$26, $\% 2$

0004:59	D 02	105	EOR	\$0206, Y	
OOC7:A4	3 C	106	LDY	\$3C	
0009:71	26	107	STA	(\$26), Y	
OOCE:C8		108	INY		
OOCC:84	SC	109	STY	क 3 C	
OOCE: DO	EF	110	BNE	1.16	
0000: BC	8С CO	111 L 17	LDY	\$Cosc, X	
0003:10	FB	112	BFL	L17	
0005:57	D6 02	113	EOF:	\$02D6, Y	:VEFIFY data sumcheck valid
0008: 00	88	114 L 18	ENE	LS	
OODA:AB		115	tay		
OODE: A2	56	116419	LDX	\# ${ }^{\text {S } 56}$	
OODD: CA		117 L20	DEX		
OODE: 30	FB	118	EMI	L. 19	
OOEO: Bt	26	119	LDA	(\$26), Y	
OOE2:5E	O0 0s	120	LSR	\$0300, x	gnibeilise frimary and secondariy
OOES:2A		121	ROL	A	: DATA TOGETHER
OOEG: SE	0003	122	LSF	\%0300, x	
OOE9:2A		123	FOL	A	
OOEA:91	26	124	STA	(\$26) ${ }_{9}$ Y	
OOEC:Éd	26	125	INC	\$26	
OOEE:DO	ED	126	ENE	120	
OOFO:E6	27	127	INC	\$27	
OOF2:E6	30	128	INC	\$30	
OOF4:AS 30	30	129	LDA	\$30	
OOFó:CD	0008	130	CMF	\$0800	;ARE MORE SECTORS TO BE READ?
OOF9: A6	2 B	131	LDX	+ 2 B	: Only if booting from a basics' diske
TTE					
OOFE:90	DE	132	BCC	118	
OOFD: 4 C	0108	133	JMF	\$0801	ISTART TO EXECUTE SECOND STAGE EOOTSTR

*** SUCCESSFUL ASSEMBLY: NO ERFORS

FFSS IORTS 8A L12 BF L16
16 L 2
$62 L 5$
75 L
06 L1
2 L13
Do 1.17
DD 120
6316

86 L 10
AA L14
D8 Lis
$20 \quad 3$
$68 \quad 17$

88 L11
AE L15
DE L19
41 L4
6C Le

U-MICROCOMPUTERS

U-Microcomputers Ltd.
Winstanley Industrial Estate
Long Lane, Warrington, Cheshire WA2 8PR
Telephone 0925-54117/8
Telex 629279 UMICRO G

